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Abstract—In the modern world, there is a huge demand for very 
speed and efficient mechanical systems in every field. In the design 
the companies are exploring the use of composite materials as a 
replacement for the conventional materials especially in the 
industries like aerospace, automobiles…etc. In particular polymer 
matrix composites are playing more widely used in the design of the 
aerospace components because of their high stiffness and strength to 
weight ratio’s.  
 
The rotor shafts play a very major role in power transmission 
systems which are very crucial parts of any mechanical system like 
helicopter rotor’s, PTO shaft in trucks, tractors, heavy 
equipment…etc. In this paper we try to design a hallow PTO shaft 
with a GFRP and CFRP composite materials for a prescribed torque 
transmission requirements and geometric constraints and compare 
the efficiency of each other which is very important consideration in 
the design of a shafts. 

1. INTRODUCTION 

Composite materials are different materials which have 
interesting properties such as high strength to weight ratio’s 
when compared to metals, which make them very attractive 
for rotating systems. Attempts are being made to replace metal 
shafts by composite ones in many applications: drive shafts for 
helicopters, centrifugal separators, and cylindrical tubes for 
the automotive and marine industries. They also provide 
designers with the possibility of obtaining predetermined 
behaviors, in terms of position of critical speeds, by changing 
the arrangement of the different composite layers: orientation 
and number of plies. 

On the other hand, these materials have relatively high-
damping characteristics. For a rotor made with composite 
materials, internal damping is much more significant 
companied with those associated with a metal rotor. 

1.1 Composite Material 

A material composed of 2 or more constituents is called 
composite material. Composites consist of two or more 
materials or material phases that are combined to produce a 

material that has superior properties to those of its individual 
constituents. The constituents are combined at a macroscopic 
level and or not soluble in each other. The main difference 
between composite and an alloy are constituent materials 
which are insoluble in each other and the individual 
constituents retain those properties in the case of composites, 
whereas in alloys, constituent materials are soluble in each 
other and forms a new material which has different properties 
from their constituents. Classification of Composites Polymer 
matrix composites Metal matrix composites Ceramic Matrix. 

B) Advantages of Composites 

The advantages of composites over the conventional materials 
are: High strength to weight ratio, high stiffness to weight 
ratio, high impact resistance, better fatigue resistance, 
Improved corrosion resistance, Good thermal conductivity, 
Low Coefficient of thermal expansion. As a result, composite 
structures may exhibit a better dimensional stability over a 
wide temperature range, high damping capacity. 

C) Limitations of Composites 

The limitations of composites are: Mechanical 
characterization of a composite structure is more complex than 
that of a metallic structure, the design of fiber reinforced 
structure is difficult compared to a metallic structure, mainly 
due to the difference in properties in directions, the fabrication 
cost of composites is high, rework and repairing are difficult, 
they do not have a high combination of strength and fracture 
toughness as compared to metals and they do not necessarily 
give higher performance in all properties used for material 
selection. 

D) Applications of Composites 

The common applications of composites are extending day by 
day. Now a day they are used in medical applications too. The 
other fields of applications are: 

Automotive: Drive shafts, clutch plates, engine blocks, push 
rods, frames, valve guides, automotive racing brakes, 
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filament–wound fuel tanks, fiber Glass/Epoxy leaf springs for 
heavy trucks and trailers, rocker arm covers, suspension arms 
and bearings for steering system, bumpers, body panels and 
doors.  

Space: payload bay doors, remote manipulator arm, high gain 
antenna, antenna ribs and struts etc.  

Marine: Propeller vanes, fans & blowers, gear cases, valves & 
strainers, condenser shells.  

Chemical Industries: Composite vessels for liquid natural gas 
for alternative fuel vehicle, racked bottles for fire service, 
mountain climbing, underground storage tanks, ducts and 
stacks etc. 

Aircraft: Drive shafts, rudders, elevators, bearings, landing 
gear doors, panels and floorings of airplanes etc. 

Electrical & Electronics: Structures for overhead transmission 
lines for railways, Power line insulators, Lighting poles, Fiber 
optics tensile members etc. 

Sports Goods: Tennis rackets, Golf club shafts, Fishing rods, 
Bicycle framework, etc. 

E) Carbon Fiber 

Carbon fiber is a material consisting of fibers about 5–10 μm 
in diameter and composed mostly of carbon atoms. 

To produce carbon fiber, the carbon atoms are bonded 
together in crystals that are more or less aligned parallel to the 
long axis of the fiber as the crystal alignment gives the fiber 
high strength-to-volume ratio. Several thousand carbon fibers 
are bundled together to form a tow, which may be used by 
itself or woven into a fabric. 

The properties of carbon fibers, such as high stiffness, high 
tensile strength, low weight, high chemical resistance, high 
temperature tolerance and low thermal expansion, make them 
very popular in aerospace, civil engineering, military, and 
motorsports, along with other competition sports. However, 
they are relatively expensive when compared to similar fibers, 
such as glass fibers or plastic fibers. 

Carbon fibers are usually combined with other materials to 
form a composite. When combined with a plastic resin and 
wound or molded it forms carbon fiber reinforced polymer 
which has a very high strength-to-weight ratio, and is 
extremely rigid although somewhat brittle. However, carbon 
fibers are also composited with other materials, such as with 
graphite to form carbon-carbon composites, which have a very 
high heat tolerance. 

F) Glass Fiber 

Fiberglass is a type of fiber reinforced plastic where the 
reinforcement fiber is specifically glass fiber. The glass fiber 
may be randomly arranged but is commonly woven into a mat. 
The plastic matrix may be a thermosetting plastic- most often 
epoxy, polyester resin- or vinyl ester, or a thermoplastic. 

The glass fibers are made of various types of glass depending 
upon the fiberglass use. These glasses all contain silica or 
silicate, with varying amounts of oxides of calcium, 
magnesium, and sometimes boron. To be used in fiberglass, 
glass fibers are made with very low levels of defects. 

Fiberglass is a strong lightweight material and is used for 
many products. Although it is not as strong and stiff as 
composites based on carbon fiber, it is less brittle, and its raw 
materials are much cheaper. Its bulk strength and weight are 
also better than many metals, and it can be more readily 
molded into complex shapes. 

Applications of fiberglass include aircraft, boats, automobiles, 
bath tubs and enclosures, swimming pools, hot tubs, septic 
tanks, water tanks, roofing, pipes, cladding, casts, surfboards, 
and external door skins. 

1.2 Power Take-off Shafts 
A power take-off or power takeoff (PTO) is any of several 
methods for taking power from a power source, such as a 
running engine, and transmitting it to an application such as an 
attached implement or a separate machine. 
Most commonly, it is a system comprising a splined output 
shaft on a vehicle like tractor’s or trucks and machinery 
designed so that a PTO shaft, a kind of drive shaft, can be 
easily connected and disconnected, and a corresponding input 
shaft on the application end. The power take-off allows 
implements or another external machine to draw energy from 
the engine. 
Semi-permanently mounted power take-offs can also be found 
on industrial and marine engines. These applications typically 
use a drive shaft and bolted joint to transmit power to a 
secondary implement or accessory. In the case of a marine 
application, such shafts may be used to power fire pumps. 
In aircraft applications, such an accessory drive may be used 
in conjunction with a constant speed drive. Jet aircraft have 
four types of PTO units, internal gearbox, external gearbox, 
radial driveshaft, and bleed air which are used to power engine 
accessories. In some cases, aircraft power take-off systems 
also provide for putting power into the engine during engine 
start 

2. METHODOLOGY 
In this paper the power take-off shaft that is used in a 
helicopter was designed with the dimensions that were taken 
from the Study that was conducted by NAL. At first we 
recreated the same model in order to verify the results 
accuracy of our FEA model and the after we had an 
satisfactory convergence with those of the experimental results 
provided in the study, then we applied the same FEA model to 
perform our own simulation or virtual experimentation. The 
boundary conditions and the torque values were taken from 
the same study and this was applied to the PTO shafts that 
were made out of both unidirectional and woven CFRP and 
two unidirectional GFRP materials and comparison was made 
between them. A comparison of layer-wise stress was also 
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